Mitsubishi Chemical's thermoplastic carbon fiber composite material

# Kyron<sup>™</sup>ULTRA

Kyron<sup>™</sup>ULTRA is a new sheet-like intermediate material developed by Mitsubishi Chemical, in which carbon fibers are impregnated with engineering plastics. It is a high performing carbon fiber composite material in the form of a UD (Uni-Directional) prepreg with carbon fiber in one direction.



Kyron<sup>™</sup>ULTRA, which is benefited from Mitsubishi Chemical's expertise in carbon fiber technology, resin engineering, and composite material design, offers the following characteristics:

## Performance

A prepreg that makes the most of the characteristics of carbon fiber and thermoplastic resin with our composite material technology.

## High quality

3)

Kyron<sup>™</sup>ULTRA features ultra-low voids and high dimensional accuracy, making it applicable for thermoplastic ATL (Auto Tape Layup)molding technology, general-purpose stamping technology, etc.

### High formability

With ultra-low voids, takt time (process work time)can be shortened in general-purpose stamping. In addition, freezer storage of materials is not required.

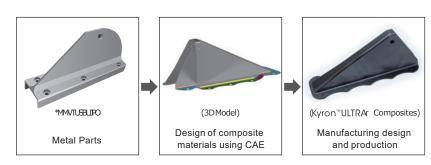


#### Kyron<sup>™</sup>ULTRA (under development)

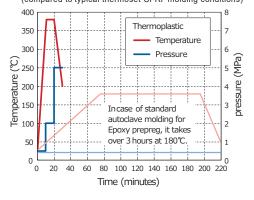


Kyron<sup>™</sup>ULTRA cross-sectional photo (enlarged from 100.0 μm) This image demonstrates that the internal void is kept to a minimum.




Kyron<sup>™</sup>ULTRA Product appearance

| Resin type               |                                                 |                                      | PEEK                      |                               | Heat Resistant PEEK       |                            | PEI                        | Remarks                     |
|--------------------------|-------------------------------------------------|--------------------------------------|---------------------------|-------------------------------|---------------------------|----------------------------|----------------------------|-----------------------------|
| Name of product          | Development code                                |                                      | TR K42G190S               | MR K42G190S                   | TR K44F190S               | MR K44F190S                | MR K71F190S                |                             |
|                          | Reinforced fiber                                |                                      | General Purpose<br>24t CF | HighStrengthPurpose<br>30t CF | General Purpose<br>24t CF | HighStrengthPurpose 30t CF | HighStrengthPurpose 30t CF |                             |
|                          | Reinforced fiber Structure                      |                                      | UD                        | UD                            | UD                        | UD                         | UD                         |                             |
|                          | FAW                                             | g/º                                  | 190                       | 190                           | 190                       | 190                        | 190                        |                             |
|                          | Resin Content                                   | wt%                                  | 32                        | 33                            | 32                        | 33                         | 32                         |                             |
|                          | Vf                                              | vol%                                 | 60                        | 60                            | 60                        | 60                         | 60                         |                             |
|                          | Calculated thickness CPT                        | mm                                   | 0.17                      | 0.18                          | 0.17                      | 0.18                       | 0.18                       |                             |
| Physical<br>Properties   | Density                                         | g/cc                                 | 1.61                      | 1.60                          | 1.61                      | 1.60                       | 1.58                       |                             |
|                          | Matrix resin Melting Point                      | °C                                   | 343                       | 343                           | 343                       | 343                        | -                          | Only matrix resin           |
| ical                     | DMA-Tg (E'-onset)                               | °C                                   | 145                       | 145                           | 165                       | 165                        | 215                        | CFRTP testpiece measurement |
| Ň                        | DMA-Tg (tanδ)                                   | °C                                   | 165                       | 165                           | 185                       | 182                        | 225                        | CFRTP testpiece measurement |
|                          | 0°Flexural strength                             | MPa                                  | 2100                      | 2100                          | 2100                      | 2100                       | 1890                       |                             |
| Prop                     | 90°Flexural strength                            | MPa                                  | 145                       | 175                           | 170                       | 170                        | 85                         |                             |
| Mechanical<br>Properties | Interlaminar shear strength<br>(ILSS)           | MPa                                  | 145                       | 140                           | 116                       | 129                        | 106                        |                             |
|                          | Compression strength<br>After Inmapct (6.7J/mm) | MPa                                  | -                         | 360                           | 260                       | -                          | -                          |                             |
| Chemical<br>Resistance   | Flame resistance                                | Example of<br>aviationstandards      | Good                      | Good                          | Good                      | Good                       | Good                       |                             |
|                          | Water Absorption                                | Example of immersion<br>in warmwater | Good                      | Good                          | Good                      | Good                       | Average                    |                             |
|                          | Chemical resistance                             | Example of immersion<br>indiesel oil | Good                      | Good                          | Good                      | Good                       | Average                    |                             |


Note: The values in this table are typical and do not imply any kind of guarantee.

## **Component Design Examples**

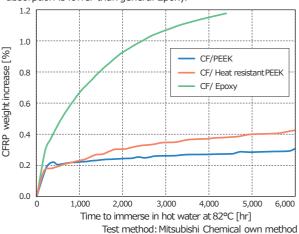
In the case of the parts (below), the parts made of Kyron<sup>™</sup>ULTRA PEEK are 60% lighter than the same parts made of Titanium. By using Heat and Cool press molding, the tact time has been reduced to less than half compared to conventional autoclave molding.



 Recommended conditions for press molding (compared to typical thermoset CFRP molding conditions)



## Characteristic Example


#### Combustion gas test (Smoke density, LessVOC)

rPEEK and PEIbased Kyron™ULTRA has extremely low smoke density and gas generation.

|                 |                |                         | Comparison              |                         |                                   |
|-----------------|----------------|-------------------------|-------------------------|-------------------------|-----------------------------------|
| Resin ty        | rpe            | PEEK                    | Heat Resistant<br>PEEK  | PEI                     | [REF]<br>Flame resisting<br>Epoxy |
| Carbon Fiber    |                | High strength<br>30t CF | High strength<br>30t CF | High strength<br>30t CF | General<br>24t CF                 |
| Smoke density   | <200           | 1.5                     | 1.7                     | 1.4                     | 173.6                             |
| со              | <1000<br>(ppm) | 50-100                  | 50-100                  | 50-100                  | 100-200                           |
| HCN             | <150<br>(ppm)  | < 0.5                   | < 0.5                   | < 0.5                   | 4-5                               |
| HF              | <100<br>(ppm)  | N.D.                    | N.D.                    | N.D.                    | N.D.                              |
| HCI             | <150<br>(ppm)  | N.D.                    | < 50                    | N.D.                    | N.D.                              |
| SO2             | <100<br>(ppm)  | < 20                    | < 20                    | <20                     | < 20                              |
| NOx <2100 (ppm) |                | <2                      | <2                      | 2-5                     | 10-20                             |
|                 |                |                         |                         | Test method             | :REF BSS7239                      |

Hot water immersion test (Less water absorption)

r Our data shows PEEK and PEI based Kyron™ULTRA 's water absorption is lower than general Epoxy.



.Chemical resistance of various resins https://www.mcam.com/en

## Mitsubishi Chemical's Carbon Fiber Composite Materials

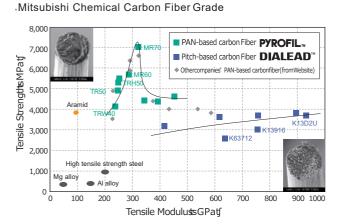
Mitsubishi Chemical's Carbon Fiber Line-up



SMC (Sheetmolding compound)

Crystalline plastics

Attach business card of the handling company


Continuous heat

resistance temperature

250°C

150°C

100°C



Mitsubishi Chemical's Carbon Fiber Composite Materials Website https://www.m-chemical.co.jp/carbon-fiber/

#### Plastics PEEK PTFE PPSU PPS PES PEI PSU PVDF PC General Engineering PA Plastics PET POM " #4 PMMA UHMW-PE Commodity PP Plastics PE-HD PVC

PBI

ΡI

PAI

<sup>j</sup> Reference<sup>r</sup>MCAM's stock shape line-up

Advanced Engineering

Amorphous plastics

Standard packaging specifications

| Paper tube size             | 6 inchesJOuter diameter $\Phi 161mmx$ Innerdiameter $\Phi 153mmx$ Length 490 mm |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Cardboard size (insidesize) | Width 495mmWx Depth 300mmDx Height 320mmH                                       |  |  |  |  |

MITSUBISHI CHEMICAL GROUP MITSUBISHI CHEMICAL CORPORATION

https://www.m-chemical.co.jp/carbon-fiber/en/ 1-1 Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8251, Japan

- The information and data contained in this brochure are as of July, 2022.
  Data are average results of experiments made on standard procedures and subject to normal manufacturing variation.
  The content of this brochure may be changed without prior notice.
  Kyron is a registered trademark of Mitsubishi Chemical Advanced Materials.
  Due to printing characteristics, the color tones may differ from the actual ones.
  The contexcription of any data or information contained in this brochure without prior written consent is strictly prohibited.
  Printed on paper certified by the FSC<sup>®</sup>, an organization established to promote the responsible management of the world's forests, using environmentally conscious waterless printing techniques.



